由于恒压充电开始至后期,电源电压始终保持一定,所以在充电开始时充电电流相当大,大大过正常充电电流值。但随着充电的进行,蓄电池端电压逐渐升高,充电电流逐渐减小。当蓄电池端电压和充电电压相等时,充电电流减至小甚至为零。
由此可见,采用恒压充电法的优点在于,可以避免充电后期充电电流过大而造成极板活性物质脱落和电能的损失。但其缺点是,在刚开始充电时,充电电流过大,电极活性物质体积变化收缩太快,影响活性物质的机械强度,致使其脱落。而在充电后期充电电流又过小,使极板深处的活性物质得不到充电反应,形成长期充电不足,影响松下蓄电池的使用寿命。
所以这种充电方法一般只适用于无配电设备或充电设备较简陋的特殊场合,如汽车上蓄电池的充电,1号至5号干电池式的小蓄电池的充电均采用等压充电法。
采用等压充电法给蓄电池充电时,所需电源电压:酸性蓄电池每个单体电池为2.4~2.8v左右,碱性蓄电池每个单体电池为1.6~2.0v左右。
为补救恒定电压充电的缺点而采用的一种方法。即在充电电源与电池之间串联一电阻,这样充电初期的电流可以调整。但有时大充电电流受到---,因此随充电过程的进行,蓄电池电压逐渐上升,电流却几乎成为直线衰减。有时使用两个电阻值,约在2.4v时,从低电阻转换到高电阻,以减少出气。
1、正极板软化、负极板硬化(也称硫酸盐化)。
2、短路。
3、断路。
4、热失控变形。由于充电电压和电流控制不当,在充电后期会出现一种临界状态,即热失控。此时蓄电池的电流及温度发生积累性的相互增强作用,使电池槽壳变形“鼓肚子”。
5、电解液干涸。干涸失效是阀控式密封铅酸蓄电池所特有的,从电池中排出氢气、氧气、水蒸汽、酸雾都是电池失水的方式和干涸的原因。失水的原因有气体再化合的效率低;从电池壳体中渗出水;板栅腐蚀消耗水;自放电损失水。干涸的原因:当浮充电压过高,气体析出量增加,气体再化合效率低,安阀频繁开启,失水多;环境温度升高,未及时调整浮充电压,同样产生失水过程。
6、壳体破损。
7、端子漏液腐蚀断。